Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Radioact ; 270: 107299, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37778108

RESUMO

Current operational models for nuclear cloud rise over land were developed and validated using observations from shallow-buried or surface detonations, where lofted soil quickly mixed with fission products from the detonation. These models poorly predict fallout from elevated detonations near the fallout-free height of burst (FFHOB), where interactions with the ground are limited and the mixing of fission products and lofted soil is incomplete. Fallout-free is a misnomer at this HOB, as fallout was observed in these cases, but was below the levels of concern, especially off-grounds of the nuclear test site. To correctly characterize and model fallout from detonations near the FFHOB, models must be developed which can capture the stratified nature of the particle and activity-size distributions within the cloud. Previously, it was shown that the Weather Research and Forecasting (WRF) model can accurately simulate nuclear cloud rise for airbursts with little to no ground interactions (Arthur et al., 2021). That work is expanded here by (1) using a radiation-hydrodynamics code to improve the fireball initialization in WRF, (2) further developing an aerosol package from WRF-Chem to simulate lofted soil, and (3) combining the WRF cloud rise simulations with the operational models used at the National Atmospheric Release Advisory Center (NARAC) for fallout modeling. Using this combination of codes, the Upshot-Knothole Grable detonation, which was just below the FFHOB, is simulated from seconds after detonation through cloud rise and fallout, and results are compared to historical test data. The results show improved prediction of dose rate and highlight the need to correctly characterize the entrainment of material into the cloud and the subsequent mixing of fission products with entrained material.


Assuntos
Monitoramento de Radiação , Cinza Radioativa , Cinza Radioativa/análise , Monitoramento de Radiação/métodos , Modelos Teóricos , Tempo (Meteorologia) , Aerossóis/análise
2.
J Environ Radioact ; 192: 667-686, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29525108

RESUMO

After performing a first multi-model exercise in 2015 a comprehensive and technically more demanding atmospheric transport modelling challenge was organized in 2016. Release data were provided by the Australian Nuclear Science and Technology Organization radiopharmaceutical facility in Sydney (Australia) for a one month period. Measured samples for the same time frame were gathered from six International Monitoring System stations in the Southern Hemisphere with distances to the source ranging between 680 (Melbourne) and about 17,000 km (Tristan da Cunha). Participants were prompted to work with unit emissions in pre-defined emission intervals (daily, half-daily, 3-hourly and hourly emission segment lengths) and in order to perform a blind test actual emission values were not provided to them. Despite the quite different settings of the two atmospheric transport modelling challenges there is common evidence that for long-range atmospheric transport using temporally highly resolved emissions and highly space-resolved meteorological input fields has no significant advantage compared to using lower resolved ones. As well an uncertainty of up to 20% in the daily stack emission data turns out to be acceptable for the purpose of a study like this. Model performance at individual stations is quite diverse depending largely on successfully capturing boundary layer processes. No single model-meteorology combination performs best for all stations. Moreover, the stations statistics do not depend on the distance between the source and the individual stations. Finally, it became more evident how future exercises need to be designed. Set-up parameters like the meteorological driver or the output grid resolution should be pre-scribed in order to enhance diversity as well as comparability among model runs.


Assuntos
Poluentes Radioativos do Ar/análise , Monitoramento de Radiação , Radioisótopos de Xenônio/análise , Austrália , Cooperação Internacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...